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ABSTRACT

Dynamic stability and parametric resonance of longitudinally excited
cylindrical propellant tanks are investigated to determine the significance
of this form of response in launch vehicle systems. A theoretical analysis
is conducted to predict the dynamic stability of a simplified model consisting
of a partially liquid filled cylinder which has a rigid flat bottom, an internal
ullage pressure, and a rigid top mass. Donnell equations for cylindrical
shells are used to determine natural frequencies, forced axisymmetric
response, and dynamic stability of the model. Numerical results are com-
pared with experimental observations for a range of several significant
parameters. Although it is found that the stability is governed by a coupled
set of Mathieu-Hill equations, approximate solutions are presented which
allow relatively easy determination of stability for the case of principal
parametric resonance. Additional experiments are conducted for a 1/16-scale
model of a Saturn-V LOX tank to determine the influence of ring stiffeners.
Instabilities and many forms of nonlinear response are found to be present
for tanks having less than three stiffener rings.
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NOTATION

radius of the shell

inner radius of the tank

speed of sound in the liquid

E/pg, speed of stress waves in the shell
modulus of elasticity

excitation frequency in cps

standard acceleration of gravity
nondimensional excitation amplitude (ﬁowz/ g)
h/a, nondimensional liquid depth

hg/a, nondimensional thickness of shell
depth of liquid

thickness of shell

mass moment of inertia of top weight about z axis
length of the shell

top mass

shell mass, 2mahglpg

nondimensional top mass

one~half of the number of circumferential nodes;
cos {mé)

stress resultants in the shell (linearized)

dynamic part of initial-state stress resultants
{linearized)

static part of initial-state stress resultants
(linearized)
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NOTATION (Cont'd)

axial wave number; sinnwx/{
nondimensional pressure, p/E

nondimensional pressure (axisymmetric) due to
bottom motion in a rigid tank

pressure in the liquid

ullage pressure

pressure loading on the shell

external loads on shell in x and 0 direction,respectively
generalized loading due to pB

cylindrical coordinates (space-fixed)

time

u, v, W, X, y, nondimensionalized by the radius a
displacements along x, 8, r direction, reSpectively
radial tank displacement at an antinode

nondimensional amplitude of axial excitation
(XO = io/a)

excitation displacement

displacement amplitude of axial excitation
axial wavelength parameter (nwa/{)
Poisson's ratio

mass density of liquid

mass density of the shell

' nondimensional frequency, (wa/cg)



NOTATION (Cont'd)

Qe : k-th eigenvalue wpa/cg

w circular frequency of excitation

Superscripts and Subscripts

()e related to the complementary solution
()P related to the particular solution

() the amplitude of ( )

(") (d@/ar) () 7 =wt

xi



DYNAMIC STABILITY AND PARAMETRIC RESONANCE IN
CYLINDRICAL PROPELLANT TANKS

By Daniel D. Kana, Wen-Hwa Chu,
and Tom D. Dunham
Southwest Research Institute

INTRODUCTION

General

_ Longitudinal dynamics is recognized as a very important part of the
behavior of launch vehicles during flight. The interaction of liquids and their
elastic containers plays a dominating role in overall vehicle response under
longitudinal excitation since liquid pressures form the dominant effective
masses, as well as avenues of energy feedback in a vehicle structure. As a
result, the synthesis of vehicle structures into relatively simple spring-
mass representa.tions1 provides only a gross approximation of vehicle
response, for the overall behavior of the liquid and elastic tank can only be
obtained by careful consideration of both linear and nonlinear interactions.

Various types of dynamic responses of representative vehicle~tank
systems have been observed experimentally for longitudinal excitation of
laboratory models, as part of the earlier effort under the present programz.
For moderate and higher frequencies, three forms of response appeared to
be the most significant, depending on the exact configuration of the tank and
its stiffener system. Direct linear harmonic response in axisymmetric
modes occurs primarily as large pressure amplifications within the liquid
accompanied by very small wall responses. On the other hand, response in
nonaxisymmetric modes appears in the form of relatively large harmonic
wall responses accompanied by only minor pressure amplitudes. Finally,
for unstiffened or lightly stiffened tanks, the dominant form of response
occurs as parametric modes in which large symmetric harmonic pressure
oscillations are accompanied by large-amplitude 1/2-subharmonic wall
motion in nonsymmetric modes, a nonlinear response which results from
instabilities in linear responses.

The first two of the above-described responses have been given con-
siderable attention; reviews of much of the work are given in References 2
through ‘4, The third, nonlinear form of response has been studied only
little, particularly from the launch vehicle point of view?-%4, Some addi-
tional work which was recently translated from the Russian literature is
given in References 5 and 6. The investigation of Bagdasaryan and Gnuni5,
which deals with dynamic stability of anisotropic shells, is very closely



related to the present study for the case where the presence of stiffeners
produces effective orthotropic properties in cylinders.

Dynamic instability and parametric resonance have been studied both
analytically and experimentally for the case of a full tank only3, 4. On
the other hand, liquid depth variations, ullage pressure, and coupled end
masses were observed to exert a strong influence on the vibrational response
of a propellant tankZ. Therefore, the purpose of the present study is to
investigate both analytically and experimentally the dynamic stability and
parametric response of a longitudinally-excited, partially-filled elastic
cylinder subject to both ullage pressure and a rigid top mass. To facilitate
comparison between theory and experiment, results are obtained for an
unstiffened, flat-bottom cylinder. Subsequent experimental results are then
obtained for a more representative tank model to indicate the influence of
longitudinal stiffeners and ring baffles on the dynamic instability mechanism.

Description of Models

Most of the work herein was conducted in a liquid-tank system such
as that shown in the schematic of Figure 1, where the analytical coordinate
system is also defined. This configuration is designated as Tank A for the
purpose of this report. A photograph of Tank A and its associated apparatus
is shown in Figure 2. The tank is fabricated of 0. 005-inch thick type 302
stainless steel sheet which was rolled and butt-welded along a longitudinal
seam. The lower end is spot welded to a rigid flange which, in turn, is
bolted to a flat, rigid base which forms the tank bottom, as well as the
attachment to the electrodynamic shaker armature. The upper end is spot
welded to a rigid end disk which also forms a mount for and part of the top
mass. Two rows of 0.020-inch diameter spot welds are used at each end.
Spots are spaced 1/8-inch apart with 1/8 inch between rows. Both ends are
sealed with epoxy cement to form an airtight system. Several different
annular top masses were fabricated to fit the top support. Water is used as
the model liquid.

The instrumentation for Tank A, as shown in Figure 2, is essentially
the same as that used for studying elastic-tank responses in the earlier
work?; therefore, it will not be described here. The only different features
are in the mechanical support for the tank wall displacement transducer, and
these can clearly be seen in the photograph. As before, this system allows
radial displacement to be monitored at all points on the tank wall.

Some additional experiments were conducted in the 1/16~scale model
of the S-IC LOX tank which was fabricated earlier in the program. Complete
details of this tank and its associated instrumentation system were given in
the results of that work%. However, for convenience, a photograph and
schematic of this tank are given in Figures 3 and 4, respectively. It may be
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noted that no top mass is used with this tank. For the present purposes, it

is designated as Tank S-0, S-1, etc., depending on the number of ring baffles
installed. A complete gchematic of all tank configurations used in the present
study is given in Figure 5. '

Experimental procedures used for both of the above tanks consisted of
observing radial wall response and liquid pressure at the center of the tank
bottom for various input accelerations and frequencies. Detailed procedures
for obtaining stability boundaries, as well as nonlinear responses, are the
same as in the previous work2.

THEORETICAL ANALYSIS

Dynamic stability of the system shown in Figure 1 will be analyzed
using bending theory of cylindrical shells. From earlier work, as well as
preliminary experiments, it is found that instability and parametric resonance
occurs in the liquid-tank system in a certain pattern. That is, first the
system responds in axisymmetric linear modes which can be called the
initial state. Then, under certain conditions of excitation, nonaxisymmetric
perturbations which are superimposed on the initial state become unstable
and, subsequently, grow into a nonlinear parametric response called the
final state. The dominant form of displacement in the final state is that
previously described in which the shell wall responds in a nonsymmetric
1/2-subharmonic motion referred to as the principal parametric resonance.

A detailed analytical description of the instability mechanism for a
full tank has been given by Kana and Craig3' 4 by the use of the perturbation
method of Bolotin?!. The qualitative aspects of this description also apply in
the present case. Thus, if one separates the initial-state shell motion from
that of the nonlinear final state, the perturbed motion remains. The analysis
of only the initial state, and the perturbed motion is carried out for the pres-
ent system. The formulation is logically separated into several parts, with
the final part giving the equations governing dynamic stability.

Shell Equations

Sanders® 9 has derived a set of nonlinear equations for a general
shell based on the Donnell-Mushitari-Vlasov approximations. Similar
equations for cylindrical shells have been given by Bieniek, et al. 10,

These equations provide a description of the nonlinear final-state displace-
ments of the present system as follows:
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Further, the nonlinear forms of stress resultants are
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Equations (1) are in agreement with Equations (7) through (9) of Bieniek,

et al., 10 except that Nyx1, Nxg1, Nggl in Equation (lc) appears inside the
differentiation signs. Since the radial component of force due to Nxx] is



Nxx1 (9w/9x), the net radial force due to Ny, is 8/9x [Ny, (aw/ax)] as
indicated in Equation (lc).

It should be emphasized that Equations (1) contain nonlinear terms
contributed by two sources. The underlined terms result from geometrical
nonlinearities caused by rotations of the shell elements. This source of non-
linearity is described in detail on page 196 of Bolotin?, The remaining non-
linear terms result from the use of the nonlinear strain-displacement
relations. For the present study, we will follow the philosophy of Bolotin
and assume that the geometrical nonlinearities alone are sufficient for
determining dynamic stability.* As a result, the governing shell equations
reduce to

2 2
d~u
Lll(u) + L12(V) + L13(W) = (-p + p:h ——-——) ‘ {3a)
EH X [ -1 atz
e 9y
Loi(u) + Lzz(v) + Lpa(w) = EH (-pe + pghg > ) (3b)
at

2
-V ] ow 1 0o . Ow
+ - — _— t—— —
L3j(u) + L3a(v) + L33(w) EH [8}{ (Nxx Bx) 330 (Nee ae)
1 2 ow 1 9 ow
taox (NX9 ae) t258 (NX9 ax)]
1~ v

92w
-p.* pshs "“") (3c)
EHS ( r atZ

= -

where the Ljj are the corresponding linear operators in Equations (1), and

the stress resultants Ny,, Nyg, Ngg are given by the corresponding linearized
forms of Equations (2). Equations (3) can be used to study all aspects of the
present vibration problem, so long as the details of the aforementioned per-
turbation process is understood.

Thus, for free vibrations, we set

Nyx = Nyxgs Nyg = Nxgg» Ngg = Nggg (4)

and use homogeneous boundary conditions at the base of the tank. Both
symmetric and nonsymmetric natural modes can then be determined.

*We emphasize, however, that to determine the character and amplitude
of the subsequent nonlinear motion of the final state requires the use of the
complete form of Equations (1).



For linear forced axisymmetric vibration, which comprises the initial
state, we again use Equations (4) but impose a forced displacement at the
base of the tank. Only a symmetric response results. The solution of this
state then allows calculation of the dynamic components Ny .., Nyg., Ngga
by the use of the linearized form of Equations (2).

Finally, Equations (3) are used to determine dynamic stability of
perturbed motion by setting

Nyx = Nxxs + Nxxa, Nx@ = Nxgs + Nxfa, Nop = Nggs + Ngoa (5)

using homogeneous boundary conditions at the base of the tank, and analyzing
the stability of the resulting equations.

In all of the above cases, the shéll loads px and pg will be neglected.

Natural Frequencies of Partially-Filled Tank with Top Mass

This section deals with vibrational modes whose radial displacements
are proportional to cosm@. The case of axisymmetric vibration is contained
as a special case with m = 0. Expanding the axial displacement into a Fourier
cosine series inx plus a quadratic polynomialto satisfy the two end conditions, and
circumferential and radial displacements into Fourier sine series inx, there results

©
)3
U= [% B,X% + By (X - ;) +Bmo+ » Bmncos (n}fx)] cos (mf) cos (wt)
h=1
(6a)
V = Z Cin sin (E}E) sin(mo0)cos (wt) (6b)
n=1 0£06 <2nw
2 nr
W= 3 Amnsin (ZE) cos (m0)cos (ut) (6c)
n=1
The boundary conditions are:
At X = 0:
92w
U=0, W =0, v=0 , —-—7=0 (7 2, b, c, d)
oX
. At X =14/a:
oU 2 :
S -mmxly, w=o v=o, ZW_, (7 e, £ g h)
oX BXZ



where

M(1 - v2)

M¥# = 3 form=20
2rpga“Hg
(1-v2)1
M**:::lf_—_——lg& form=1
Pghga
M#*%* = oo for m 2 2

A very large number can be used for M** when m > 2.
To satisfy the boundary conditions on axial displacement, one has,

from Equation (7a), '

y ool
Blz=Bmo* 2 Bmn

n=1

and, from Equation (7e),
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By Fourier expansion, the x-independent Fourier coefficient (n' = 0) '
of the axial equation of motion (3a) yields
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To be used later, one can similarly define

H
2a . . nra
X3n'n = 7- f (H - X) sn’x()\.nX) sin ()\H'X) dX; )\n = T
0



Note that this term includes the effects of hydrostatic pressure

Similarly, for n' > 1, the cos (n'vx/l) coeff1c1ent of the ax1a1
Equation (3a) yields

(e o)

- 1+v
- Z ( 1?‘1 12"’ 2) anann“" z Zv )‘-ncmné

n=1 n=1

n'n

® 21 2 (1
T+ v Z )\nAmnsn'n"mz g Z (...

BoXan leln)
n=1 ) 2

YA
- (1 -v mk[ Z Nzan (%) X2n'Bron

n.—

: o)
2
+ z Nlmn(nk) Xln’an+ Z anan'n]

n=1 =1

(9)

The sin(n'tx/{) coefficient of the circumferential Equation (3b) yields

'}
14+v ~ - 14v
'{ > m Z (Xln'NZmn"'XOn'Nlmn) Bmn - Zlm > MSn'nBmn
n=1

[0 o

at mz) Cmnén'n + 21 mAmnSn'n}
. n= )

%;"(

[0 0]
=-(1-v)et ¥ Crandn'n (10)

n=1

The sin (n'wx/L ) coefficient of the radial Equation (3c) yields

. fo's}
v 2 &ln'NZmn +‘)~(On'N1mn - )"nﬁn'n) an + Z mCmnSn'n
n=1 n=1
| HZ 2 22 @ 1-v2 [Po .2
+ Z [1+—s“()\n+m)]Amnﬁn’n+ 2 [ M
n=1 12 n=1 Hs 2E

o .
Po pg 2
+ mz -E-} 61’1'!1 + z Ea m X3n!n}
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where, for Equations (9) through (11), we define.

nwa . _n'ma
)\.n = T N )\nl = 1
£/]a L]/a
~ _ 2a . [ n'ra ~ _ 2a
Xin' = Of X 51n( 7 X) dX , Xpp' = R 6[

and, in Equation (3c), for the added mass pressure [obtained from
'Equations (18) in the next section] we have used

(6 o)

-2

n'=1 n=1

jo o)

The effects of the ullage pressure appear in Equation (11).

. 2 .
Z 2 ApnMmntn sin

n'ra

£

(

X) cos(me)

Thus, in the

radial Equation (3c), the effect of initial tension due to the ullage pressure,

the hydrostatic pressure, and

top weight are included.

Equations (9) through (11) can be cast into the following matrix form

-~

[[uyl vyl [wyl]
91 (U] V] [W,]
| [U3] (V3] [W3]

3N X 3N

where all series have been truncated to N-terms.

o2 = L2y 02
2c (1 v)szk

and each submatrix of the square matrices is an NX N matrix,

r

(1Ry] [81) (11 ])

(]

82 | [Rp] 53] [Ty] | ¢ {Bm}p=0 (12)
_[R3] [S31 [T3] ] {Cm}
) 3N X 3N 7 ST
Further,
The sub-

matrices of the column matrix are each a column matrix given by

~

-
Aml

{am} =2

Am2

\ AmN/

By (Cenp )
{Bm} =4 Bm2 ¢ » {Cm} =4 Cm2 ¢ (13a)
 BmN L CmN

The elements of the NX N submatrices are given in Appendix A.1.
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Natural frequencies can be determined by a trial and error method
from the condition that the determinant of the coefficient matrix in
Equation (12) be zero." Then, subsequently, components of the natural
modes can be determined from matrix inversion of Equation (12). These
components can then be normalized with respect to A, |1 and expressed in
the form :

N

Uy = 1 BZRXZ + Bk (X - _._Q_) + Bhok t z Bmnk cos (E.T.L}f.) cos m6
2 a n=1 £
N
Vk = ) Cmnksin (-‘-‘-‘T—’i) sinm®6 (13b)
=1 L
n=
N "
Wy = z A ank Sin (n x) cos m6
n=1 !

Generalized Added Mass of Liquid

For radial shell vibrations that are proportional to cos m#f, the liquid
exerts a radial pressure which may be regarded as an apparent mass My 1y
which is added to the cylinder mass. We now derive an expression for this
quantity.

The fluid is assumed to be nonviscous, irrotational, but compressible.
The velocity potential corresponding to the mn-th component of shell motion
for small disturbances is governed by the wave equation which for periodic
motion is

2
W
Vzd)mn + '—Z bmn = 0
€0

The boundary condition on the wall is

9bmn _ 9Wmn
9r ~ ot

at r =a (wmnp outward positive) (14)

where the mn-th component of radial shell motion is
~
Wmn = Amnlt) fn(x) cos (m6) (15)
and we assume that f,(x) is an orthogonal set of functions in the interval

[0,£]. The boundary condition at the bottom is:

11



a N
mn =0 at x=0 (16)
ox ) :

When frequency of excitation is much higher than the leading few
liquid surface sloshing frequencies, the free surface condition can be approxi-
mated by

dmn =0 at x=h (17)

By separation of variables, a ‘particular solution can be constructed to
satisfy the boundary conditions on the wetted surface [Egs. (14) and (16)] as

~

: k dA
Dkank (i—,w) CcOSs ( ;x )COS (m@) (a dtzln)

6]
of= 3
k=0

with Fourier expansion of f,(x) being

oo
fn(x) = Z Dy, cOs (k-;—;-}f-)

k=0
where
' h
' kwx 2
Dy, = fh(x) cos ( )dx - —_—
n g‘ h 1+680p
and
Im (Ek L
h
R. = .______al for k > @
mk =TT EL) =mco
or
Jm(gk")
a wh
R Z= ,—teet. for k £ ——
mk = T T m(Ek) ~mcg
where
1
2
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One can then add a complementary solution, satisfying homogeneous boundary
conditions on the wetted surfaces so that the net velocity potential satisfies the
approximate free-surface condition:

¢°=[
j

i~ 8
{wsld

. mjnJm (P‘mj i—:—) Cj (i—i,w) cos {m0) +

- dA,,
wa X n
+dmoBoon cos(—-—co -)](-a = )

a
where
Fmij isthe j-th root of J}h(“mj) =0
‘ wa
Cj (i—,w) = cosh (Tlmj g) for  pmj ,?_E-b-
and
wa
CJ (g,w> = cOS8 (nmj E-) for Fmj < E—(-)—
where
1
2 w2a2 1] 2
Nmj ‘P-mj - o2 l

o,
WA
&
5
'y
—
pin
€
S’
ey
3
—~
=
3
Cd
L]
S’
o
A~
]
S——”’

B :. .= -
mn Cj (E,w) ‘
a
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(0 6]
Y (-1)K DgnEko
cos (22)
€0

The linearized pressure is given by the Bernoulli equation:

9bmn
Pmn = -P 5t

The n'-th component of generalized force is given by integration of the loading
with a weighting function fp1(x):
1

9mn'n 1 f
= fn!(x) pmndx
Pshs  Pshs

from which the generalized apparent mass can be shown as

[o's)
Mmn'n = Pi { Z Rmk (1,w) Dknﬁkn‘
s's k=1

5 k wh 2 Enl
- Z ExoDkn (-1) Enxﬁom/cos (-c—:-o—) + .g...z.. b
k=1 0 cos—
c
0

——-——-—Jo(gg)ﬁ Donbo + (1 - 6m0) | DonDon' * =7
-§o~T1v(€o) On' IOn moO - Om0 Onl0n' * gOJz"n(gt))

o .
- 2 Jm(F’-mj) anijn} (182)
j=1

in which
h
f cos (kﬂx) fri{x) dx
- h
Dint = 7
f fi?‘l:(x) dx
0
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_(;). C; (g , w)fnt(x) dx

Q
B
.
I

Y

f fr21'(x) dx
0

h
W
{ cos (-5-);—) fai(x) dx
E = 7 = DQn!
f frzlx(x) dx
0

Note then that the mn-th component of pressure is

N a®E
PE=Pmn*~ z pPshg Mpmnty cos(m8) f,i(x)
n'=

(18b)

Thus, M,n'n is the coefficient of (dz/dtz) (Kmn) in the n'-th component of
shell motion exhibiting a cos (m6) mode of vibration. To use this generalized
coefficient in Equation (11), wenote from Equation (6c) that fn(x) assumes the
form

fh(x) = sin (%}-)

Forced Axisymmetric Response

Now, assume the tank is excited axially. The same shell displace~
ment forms [Eqs. (6)] are again used. The boundary conditions on axial
displacement become

At X =0, = -Xq cos (wt) (19)
4 oU E
=— 9 - MERQ2 :
At X o 5% M*%Q4U (20).

To satisfy these conditions®, one has, from Equation (6a):

*m = 0 is assumed throughout this section. Further, superscript p designates
particular solutions.
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o

2 4
B ;=XO+BmO+ Z Bmn
n=1

a 2
(- 2 4 Mk ) B, o+

2\2 n
BZ(;) =

A Fourier method similar to that in the previous section is now
utilized. Thus, the x-independent Fourier coefficient (n' = 0) of Equation (3a)
yields

N

a n 2 a
1 - 2 4(-1)" ME*Q ) Brn -3 X0

NIN n\M 8

N[r—'

M**ﬂz

2+ (1-v2)02 - m2l=V

20 2 X20 2 m2
o - 0+ (- x10) (1-—22) 5
m 2(1 - v2) Q2 27 \a 0 21 +v) 02/ 1
After collecting B, ( terms, one finds
o)
Bmo = Zl Nomn (2) Bmn + Xm0X0 »
n=
o oo
Z Nimn @) Bpyn + Xm1¥o » Bz = Z Nomn (€2) Bmn +Xm2X0g

=1 n=1
NOmn(ﬂ) = {NOmn(Qk)]Qk=Q » Nymn(@) = [Nlmn(ﬂi()]gkzg s

NZmn(Q) = [NZmn(Qk)]Qk =Q

S [2+(1-v2) Q2,0 -m2l¥y (i)
X = (g 2 ]
m0 1 2(1 -vz) Q2 ?:. - —M**QZ)
+ (1 =¥ )(1 } Il +
£710 2(1 +v)Q?
- k2
\ 2 (2)2 7 +M 2
| 2(1 - v2) Q2 L a_1 Mk Q2

(g0 (i)
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a
Xmlz‘f(l +Xmo) - Xm2=(

Forn'2> 1, the axial Equation (3a) yields

o}
Z VAnAmndn'n

n=1

n=1 2

1+v - 1-v (1 :
mhnCmnGnun, - n’l2 > (E Bz)(Zn + leln)
1

»

n

@

- 2y 02 1 !

-7 (1-vo)e [ 20 (’ZBZXZn + leln) 6n'n - Bl ;60n'
n=

oo}
+ By 080n' + Z anén'n] (21)
n=1

The circumferential Equation (3b) yields

14+v -~ -
> [Blen' + BiXon' ¥

. 00
-m2 Y C_ 6., - % A mé, -m
n= n=1

[ ) ‘ 1-v (0] 5
+ Z (')‘n.) ansn’n] + > Z (')‘n) Cmndn'n
n=1 n=1

. 00
= - (1 - v2) 92 Z Cmnln'n (22)
n=1

Finally, the radial Equation (3c), along-with Equations (18), yields:
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©
v [Blen' + BIXOn‘ - )‘ann n' n] g Crmnd n'n

n

2 122 Pg M ‘
z Amndn'n + H Z (-M) Amn. [‘2"}5 - ""'g'—] Sntn
n=1 s n=1 2ratE

- 2y Po - 2y pg
: a
- Zl (m )EAmnﬁn'n - zl (m®) E X3n'nAmn}
vn= .n=

H 2 2, 202 1 o

- -—-zs— z (A\p + m™)" AnSpip = - (1 - vz)ﬂz[ Z Anndn'n

= n=1

o 2 =B
+ Z an'nAmn] - (1 - v®) QOn! (23)
n=1

Coefficients for Equations (21) through (23) are given in Appendix A, 2.

As a result of the axial motion of the tank bottom, the 1iquid‘ exerts a
generalized radial pressure 9Qn on the tank wall. This pressure can be
derived from a one-dimensional velocity potential which satisfies the wave

equation along with the boundary conditions

¢B =0 at x=h
—2——=§ wsinwt at x=0
ox 0 .
The velocity vpotential which satisfies these.conditions can be found as
-wx(sinwt sin [——- (h - x)]

o (wh)
~——COS ——
<o

$B =

Thus, the generalized loading (which results from the application of the
Fourier process) relative to the n'-th tank-displacement component can be
expressed as:
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. - e
pwé&n cos (wt) sin (-—-—-(h-x)) f,(X)
0B, - 90n _ 1 f 0 cg »

_ X
on' = = 3
BH, 2 5, = con (2) :
0 T Co N\ €Q
where
2 .14
ant =32
The amplitude of this loading becomes
-~ cQ. Ion!
BB = 52 - (22) — 2 | (24
17878 ®" cos (QH—?—)
€0

where we define

1 H !
Iop' = — f sin [&@- (H - X)] sin (A 1X) dX ; Apr= nTa
ags 0 €0 L

In matrix form, for N-term series expressions it follows that

{to1 -2 17} {&p} = {F} ; @2-=0-+%0? (25)
where |
 (rugd vad twa) ([R1] [51] [T1])
(6] =< [U,] [V,] (W] L [R] ={ [Rp] [S2] [To] ¢ (26 2, b)
LEARARU AT I | [R31 1831 (T3]
Qk"’ Q

Each of these is a 3NX 3N square matrix whose nine elements are each NXN

square submatrices. The submatrices are the same as those appearing in

Equation (12), the elements of which are given in Appendix A.1l. Also

- | 1AR [£,] |
{a%} =< [BR) . {F} =4 1Fa) (27 2, b)
[Chl| [Fc]
. m=0
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Each of these isa 3N X 1 column matrix whose three elements are each
NX 1 column submatrices. Elements of the submatrices of Equations (27)
are given in Appendix A.3. The elements are different from those of
Equations (13a) since Equations (25a) represent displacements for forced
oscillation (i.e., particular solution).

The amplitude of the force response is determined by the inversion of
Equation (25); i.e.,

-~ ~ ~ ~ -1 ~
{37} = {101 -22 (R} {8} o (28)
Governing Equations for Dynamic Stability
General Formulation. - We now expand the shell displacements in terms

of the natural modes determined by Equatmns (13b). The displacements,
therefore, are

3N
2 4
Uz ) ak(-r)l: By, X +B1k(X-;)+B 0y
k=1
N
+ Z ankcos n'rrx] cos (m0)
n=1l ‘
(29)
3N N
Ve Y alr) ) Cmn sin (EW—}E) sin (m@)
- - k £
k=1 n=1
3N N —
W= Z ay(r) 2 An sin(——) cos (m6)
k=1 =1 Kk £
n

For the present study, the stability of nonsymmetric (m 2 2) responses
only will be investigated. Apgain, using a Fourier® procedure as in the previous
sections, then' = 0 component of the axial Equation (3a) yields

3N 3N ,
21 axBz, = 2, (1 -v2) &0l [ B2, X20 + B1,X10 * Bmoy - ;Blk]
k= k=1

and, using Equations (8) and (9), this reduces to

3N
1

k=1
(30)

*#Note that the standard Galerkin procedure could also be used here, since
the coordinate functions (13b) satisfy all boundary conditions.
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The n'2 1 component of the axial Equation (3a) yields

3N N

o fy241-v 2 : 1+4+v ‘ ,
kzl ax Zl - ()"n"' > m ) ankan'n + "z”m)‘mCmnksh'n

3N
| 2y 2 o2 1
+ VinAmn, 8nin = kzl (1 -v7)agn Zl [}: B2, X2n!
= ' n=

+ Blkxln' + ankan’n]
and, using Equations (8) and (9), this reduces to

3N N
. 1 ’
> {(1 - Vz)(akﬂz +912<ak) 2 [" By X2n' * By Xin' * B 6n'n] =0
k=1 . n=1 2 “k k k-’ )
(31)

The circumferential Equation (3b) yields

3N Liv N 1+v

a - m (B, % + By X ) - m\_—— B L
Z k{ (B2, X1n! 1, X0n' Z NAn mn °n'n
k=1 2 k k n= 2 k

N

N
1-v2 2 2
+ 3 ( xn+m)cmnk6n.n+ >
n=1 2 n=1

mAmnk6 n'n}

3N , N
= 3 (1l -va)E, ¥ cmnksn.n}
k=1 - n=1

and, using Equations (8) and (10), this reduces to

3N N
kzl (1 - v2) (0?3, +0fay) 21 Cmnan'n} =0 (32)
= n=

Finally, the radial Equation (3c), along with Equations (18), yields:
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3N
§

N
{ z V(BZ xln' +B1 = Moy mnk + Z mCmnkén'n

HS ao1 E 2 n nn nnn
M ) 3N N 5 N
_"'g"‘)"nsn'n] Amnk t Y ek ["n 2 Ny
2ra‘“k k=1 n=1 n''=1
N €n''n'n 2 N 1
+ }\.n z N3n|| e ———— + m Z Nznll dn||n'n
n=1 dnp''n'n n'=1

N
4D ' "
+ )\nBzeOn'n]} AmnkXO cos {wt) = (1 - vz) ak.QZ Z [6n'n
n=1

+ Mpn'n ( 2)] Amnk

Then, in view of Equations (8) and (9), this reduces to

z (1 - "2) [(akﬂ ) Z [6n'n + Mmn'n (2)] Amnk

=1

N N

2

tapy Z [6n'n + Mmn'n (S%)] Amnk] -ak ) Tn'ny Xocos (wt)
=1 n=1

0 (33)

where the tension terms are

N
T 1., = (KZN tr + NoNao1t
n'm, - {[n'zz . nt'ln AN3p d

enl !n!n

+ mZNznl v> dn"n'n

n''n'n

~p
+ hnBZeOn'nJ Amnk (34)
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along with

Lla
dpiinin = ._;.._J sin (\yX) sin (\y'X) sin (ApnX) dX ;
O.n“
1 L/a
€ntin'n = - of cos (A, 1:X) cos (A, X) sin()»ny}() dax
anl . '

Additional coefficients in expression (34) are now considered. To
derive the initial-state dynamic stress resultants, consider the particular
axisymmetric (m = 0) solution due to axial excitation, with the following
components of displacement:

ap oo -
Wo= ¥ AP sin(A X) (35a)
n=1
~D 1 ap ~p £ ~P 2 =P
G = + BOX? + B (X - —) +Bpmot 2 Bmncos(AX) (35D)
a
n=1

These displacements are obtained from Equation (27a) after solving
Equation (28). The dynamic initial-state stress resultants are then obtained
by substituting Equations (35) into the linearized form of Equations (2). For
the axial dynamic component, there results

-~ Ehs m APN '*p~ -P ﬂp .
Nyg, = Z B 2X1n1tt B Xgptt - Bmn''M + VAmn!'] sin (A1t X)
2 1- v2 n''=1 " 17vn

which, for convenience, can be expressed as

N 2
- Nyy (1 -vF) o’s)
;é‘a = 2 = Z Nin'' sin{An11X)
Eh n''=1
S
Thus,
= =P D ~P
Nln” = Bzgllnn + Bl‘fxonn - )\nuann + VAmnH (36)

The derivative of the axial dynamic component of the initial-state
stress resultant is:
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ol o] .
XX Eh - “ -
2 5 {Bg + Z l(-K%n) B?nnncos()\nnX)+v)\nHAfnnncos (),nnX)]}

1-v n''=1-
or
8NxxaL 1-v2 - O a _ Oi N cos (A uX) + Elzo
89X  Ehg oX n''=1
Thus,
Napio = -AanBE o+ vinAB i, niiz (37)

Finally, the circumferential dynamic component of the initial-state
stress resultant is

R Eh, [ ®© . , = &P 3P~
NBGa = > z A prsin(h X)) +v Z (BoX1ntt * BiXon
1-v n''=1 n=1

- Ap! ’E’;z?nn”) sin (\pn! tX)}

or
S 2
-~ Nee (1 -V ) Q0
Nge = --—-—a-———-——- = z Nznn Sin()\nX)
a Ehg Al =1
Therefore,
N, = AP L+ [BhR, o B - A nBE ] (38)

Equations (36) through (38) have been used in Equation (33).

Equations (31) through (33) are the governing equations for dynamic
stability of nonsymmetric modes (m 2> 2) of the present system. By using
N-term finite series approximations throughout, these equations can be
written in a more compact matrix form as

(i) {3} + (&1 {a}- [T] Xgeos(t) {a} =0
3NX1

3NX3N 3NX1 3NX3N 3NX1 (3NX3N) (39)

where the 3N X 3N matrices are of the form:
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[M;] | 1,1 ] (1T

K1, 1T1=][T,] (40)

2t
[
]

IMp] | 7 K] =

| [M3] | | [K3] | | [T3]

and each submatrix is an N X 3N matrix. The elements of these submatrices
are given in Appendix A.4. The remaining column matrices are

3 Far)
{a}=<;z>, {a} =<2, ¢
(23N 3‘3.Nj

whose elements are the time-dependent parts of the k = 1 to 3N eigenvectors.
Equation (39) can be solved by the method given in Meadows!!, However, this
method requires a lengthy computer program. As an alternative, we resort
to a one-mode approximation. ‘

One-Mode Approximation. - Anapproximation using one mode?* of the
eigenvector expansions (29) can be reduced directly from Equation (39).
However, to allow a more lucid description, we repeat the procedure of the
previous section as it applies to the one-mode case. The shell displacements
are taken as

N
- 1 2 J nwx
Uy = aylr) [—2- B2kX + Blk (X - -;) + BmOk +nz=: , ankcos ]cos mb
(41a)
N nmwx
Vi = aglr) Z Cmnk sinTsian (41b)
n=1
N nTx
Wy = apl) ) Amny sinTcos mo (41c)
n=1 ‘

From these expressions, it is clear that the one~-mode approximation refers
to the eigenvectors and not to the coordinate functions themselves.

To form an equation governing the dynamic stability of the k-th
eigenvector corresponding to dominantly radial motion, we substitute
Equations (41) into Equation (3c) only and, simultaneously, utilize
Equations (18) for the apparent mass term, as well as Equations (8)

*#Note that ""one mode expansion' or "single eigenvector expansion'

is synonymous.
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through (11) to eliminate the coefficients of Uy and V). There results a
single equation in terms of the coefficients Amnk of Wy. Finally, to this
equationis applied the Galerkinprocedure with respect to the radial component
(41c) of the k~th eigenvector. There results -

N N N
Z Amsk msk (Q a‘k +Qkak) + z z AmnkAmsk Insn(ﬂ)ﬂ ak
s=1 s=1n=1
N N
+ Qka‘k z Z AmnkAmsk msnl(k)
s=1ln=1

N
> Ams Tsn Xgcos (wt) = 0
n=

It may be noted that the above procedure implies that the axial Equation (3a)
and circumferential Equation (3b) are approximately satisfied since axial and
circumferential displacements are small for the dominantly radlal mode
(elgenvector)

Changing the subscript ston' and rewriting this equation, one has
Mﬁk +K5k - TXO cOs ((.Ot) a,k =0 A (42)

where the scalar coefficients are

=52 X 12 o

M = Z Amn‘k+ Amn'y Z Amnkan'n(Q)]
n'=11L n=1

— ., N o, N

K = Z Amn'k + Amn'k Z Amnkan'n(Qk)]
n'=1 - ‘ n=1

T

I
g s
M2

Tn'nkAmn'k
n'=ln=1

Equation (42) is a Mathieu eqﬁation of well-known stability properties. In
order to put the above equation in standard form, let

z—-l— E:é-g_ _-_-E.ix
2T M ™



and one obtains

dza.k
dz2

+ [T - 2Gcos(22z)] ax =0 (43)

A linear approximation7 can be used to predict the stability boundaries
of the principal parametric resonance of Equation (43) for small values of
g. Interms of input acceleration for the present problem this approximation
is

R 2
(L E)@Ei for = <1

Ex = ~ = Zwkm

Kol

(44)

g ,_.(1"5) wza for -2 >
x q g 2@

THEORETICAL AND EXPERIMENTAL RESULTS
FOR SMALL MODEL

Previous work with cylinders containing liquid has shown that many
natural modes, both symmetric and nonsymmetric, exist for practical ranges
of system geometry, and much complicated nonlinear behavior results from
the interaction of their responses under longitudinal excitation. In the present
work, we have focused our attention primarily on the principal parametric
resonance. Nevertheless, such a resonance exists for each natural mode of
the system. Since the qualitative behavior is similar for each mode, for
simplicity, we investigate the interaction of the various symmetric modes
(m = 0) with the k = 1, m =10 nonsymmetric mode for various conditions of
excitation. Sufficient theoretical and experimental data were obtained to
provide a reasonable comparison for the behavior of Tank A, All experimental
data are presented in numerical form in Appendix B.

Natural Frequencies of Tank with Top Mass

The variation of natural frequency with liquid depth for several modes
of Tank A is shown in Figure 6, where each of the three parts is for a
different top mass. Theoretical computations were performed for the largest
mass (Fig. 6a) only. All symmetric modes in the given frequency range were
obtained, although only one nonsymmetric mode is indicated. Of course,
many other nonsymmetric natural modes existed in this range (note that
experimental data for two nonsymmetric modes are given in Figures 6b, c).

Natural frequencies for the symmetric modes were determined

experimentally by détecting peaks in the pressure at the center of the tank
bottom and/or detecting peaks in the output acceleration of the top mass.,
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Although Figure 6 indicates a condition of zero ullage pressure, up to py=

10 psig had to be used in order to obtain data for the symmetric modes.

This was necessary to prevent the occurrence of instability in some non-
symmetric mode, in which a simple linear symmetric response no longe;j .
was present. Fortunately, this procedure was possible since the f:requenc1e.s‘
of symmetric modes were determined to be independent of ullage pressure.
We emphasize, however, that frequencies of nonsymmetric modes are vh1gh1y
dependent on ullage pressure, so that data for the k = 1, m = 10 mode (as well
as the k = 1, m = 13 mode) in Figure 6 were taken at pg = 0. Data for these
modes were taken as peaks in the wall response at the antinode of the axial' '
wave form. Of course, the position of this antinode shifted with different

liquid depths.

Theoretical data for Figure 6a were obtained by the use of a five-term
(n = 1 to 5) expansion in Equation (12) and computing the value of the determi-
nant for the resulting 15 X 15 matrix. For computing the determinant,
frequencies were selected in the vicinity of the experimentally measured .
values for a given mode, and the determinant value was plotted as a functmr.l
of frequency. The zeros of this function were taken as the natural frequencies.

Some deviation between theory and experiment can be seen to exist
in Figure 6a. However, the use of more terms in the expansions would
reduce this deviation. This can be seen from the single point computed for
n = 10 terms for the third symmetric mode at a depth of h/f = 0.55. Since
the five-term expansions appeared to give a sufficiently good comparison
between theoretical and experimental results, most of the computations-
were thereby limited in order to reduce the required digital computer time.

Several interesting observations can be made from the data in
Figure 6. Although the frequency of the m = 10 mode is considerably below
those of the symmetric modes throughout most of the depth range, pres-
surizing the tank can raise the nonsymmetric mode above the lowest sym-
metric mode. Furthermore, to excite the m = 10 mode as a principal
parametric response requires an excitation frequency of 2‘”1-10 at a given
liquid depth, which means an excitation near the first symmetric mode.
Thus, strong interaction between the two modes can be expected in deter-
mining the dynamic stability of the principal parametric resonance for the
m = 10 mode.

For low liquid depths, it can be seen that the first symmetric mode
represents the first coupled axial top mass-shell mode with only small liquid
effects, while the second symmetric mode represents the first coupled liquid-
shell mode with only small top~-mass effects. However, these roles of the
first two modes are interchanged for greater liquid depths as indicated by
the dashed lines in Figure 6a which represent the respective decoupled
modes.

From Figure 6, it can be seen that variation in top mass had no effect
on the nonsymmetric mode but a strong effect on the first two symmetric
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modes for a middepth range of liquid, This is shown further in Figure 7,
Finally, the influence of ullage pressure on frequencies of the nonsymmetric
linear mode was not measured since this has been determined by various
previous investigations.

Forced Axisymmetric Response

The linear forced axisymmetric response comprises the’ ihitial state
for determining dynamic stability of the system, Therefore, theoretical and
experimental results are compared for this part of the tank behavior in order
to get some idea of the strong influence it has on the instability mechanism.

Figure 8 shows a comparison of theoretical and experimental axi-
symmetric forced response for a frequency range which includes the first
two modes with a liquid depth of h/¢ = 0.69. Although the data were taken
at pd =10 psig, the results are independent of pressure, as has already
been mentioned, Here, the acceleration amplification of the top mass was
chosen as a comparison parameter, although the liquid pressure at some point
in the tank could have been used just as well, An intermediate liquid depth
was chosen as a worst possible condition for using a given number of series
terms in the theoretical computations, That is, previous work indicates
that the most serious distortions of tank axial mode shape from a half-sine
wave occurs at intermediate depth ranges.

Theoretical points were determined from a numerical inversion of
Equation (28) by means of a digital computer. Of course, the net sum of
the forced axial displacement components U at x = £ form the part of the
theoretical solution which is used in Figure 8, Basically, five terms were
used, although ten terms were used for part of the range as indicated, It
can be seen that more terms reduce the discrepancy between theory and
experiment., Also, the location of the theoretical and experimental resonance
points corresponds‘ with the location of the respective natural frequencies
for the first two symmetric modes in Figure 6a, Thus, the agreement
between theory and experiment can be made as good as is desired, and the
most terms in the expansions are required at intermediate depths,

It has been mentioned that a plot of axisymmetric pressure response
at some point in the liquid looks qualitatively like that of the top mass
acceleration response shown in Figure 8, This correspondence is extremely
important in understanding the role of this initial state in determining
dynamic stability of additional perturbed motion. That is, although longi~
tudinal excitation acceleration amplitude may be held constant as frequency
is varied, the magnitude of the actual stress resultants which comprise the
parametric forces can vary considerably in amplitude, depending on the
input frequency, '

It can be surmised that the dynamic force exerted by the top mass
on the cylinder contributes dominantly to the axial stress resultant Ny,
while the corresponding axisymmetric internal pressure contributes
dominantly to the circumferential stress resultant Ngg,. Thus, we have
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the two sources of parametric excitation which appear in the stability
Equations (39) or (43). Parametric excitation occurs with either or both
sources present; however, it will be seen later that the dynamic pressure
exerts a stronger influence on stability for the configurations investigated.

Stability Boundaries

Theoretical stability boundaries for the k = 1, m = 10 principal
parametric mode were determined by means of a five-coordinate term
approximation(N = 5) in the single eigenvector approximation (k = 1),
Equation (43). .Actual boundaries were computed by Equation (44). Experi-
mental results were obtained for the corresponding conditions for which "
numerical results were computed, as well as additional conditions in order
to demonstrate the influence of a number of parameters in the system.

Experimental points were determined by holding input acceleration
constant and slowly varying frequency in the vicinity of twice the k = 1,
m = 10 natural mode until the subharmonic wall motion appeared. We
emphasize that the frequency of this natural mode depended on both liquid
depth and ullage pressure so that the frequency range of its principal
parametric resonance varied correspondingly. However, as has been men-
tioned previously, the frequencies of axisymmetric modes are independent
of ullage pressure, and their variation with liquid depth is not the same as
that for the nonsymmetric mode, so that a variety of behavior can be experi-
enced with different combinations of the system parameters.

The influence of liquid depth on the stability of the k =1, m = 10
principal parametric mode is shown in Figure 9, where input acceleration
amplitude is plotted against the ratio of input frequency to twice the natural
frequency wj.jg for this mode at the indicated fixed values for the other
parameters of the system. For this frequency parameter, the experimental
points were normalized to the frequency at the minimum point of the experi-
mental boundary (which occurs essentially at twice the experimental natural
frequency), while the theoretical points were normalized to twice the theo-
retical natural frequency. This procedure allowed a better direct comparison
of the boundaries since the theoretical and experimental natural frequency
wi.10 did not always coincide for the five-term computations (see Fig. 6a).

Theoretical stability boundaries for a principal parametric resonance
characteristically converge on zero for the unity value of the frequency
parameter used here’! when damping is not included in the theory. However,
the experimental boundaries should fall above and within the theoretical
boundary since damping is always present in the experimental system. A
higher experimental boundary corresponds to the presence of increased
damping.
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Note that the three boundaries shown in Figures 9a - c are plotted to
a different scale, each being about one order of magnitude apart. This is
emphasized in Figure 9d where only the experimental points are plotted on a
logarithmic vertical scale. An immediate conclusion can be made that the
liquid is very effective in producing the instability in the system for this
mode. That is, instability occurs at lower input accelerations with more
liquid present. This result is logical if one considers that the parametric
action occurs through the interaction of an inplane stress resultant with the
curvature of the shell at a given point. Thus, in the stability equations, a
term of the type Ngga (92w/002) is much larger than one like Nyyxg (92w/362)
for the mode being considered, so that mathematical and physical correspondence
follows.

Good correspondence between theory and experiment is shown in
Figures 9a ~ b while that in Figure 9c is not so good. This discrepancy for
the completely filled cylinder resulted primarily because of experimental
error at such low values of input acceleration. Although a narrow band
dynamic analyzer filter was used for measuring the input at nearly a single
frequency, the input was within the mechanical noise level of the cooling fans
of the electrodynamic shaker so that the actual input was more wide band than
desired. Hence, the experimental boundary falls outside that for the theory
because of the extraneous input energy. This problem was not so significant
for the data of Figures 9a - b since the input was above 0.0l g, which is about
. the noise level in the shaker system. The overall agreement between theory
and experiment is quite good.

The effects of ullage pressure on dynamic stability are shown in
Figure 10. These data can be used with those of Figure 9a to show a fairly
wide range of pressure effects. The three boundaries are shown for com-
parison on a logarithmic scale in Figure 10c. In Figures 10a-b, the experi-
mental value of w; _, was used for normalizing the theoretical points since
the theoretical natural frequency was not computed for this case.

Deviation between theory and experiment occurs for two different
reasons in Figures 10a-b. The left side of the experimental boundary in
Figure 10a rises much more rapidly than that for the theory. This occurred
because of the presence of coupling with the next lower nonsymmetric mode
in the system. This type of coupling is quite prevalent in a practical system
since many modes are present, and the modal density is quite high. Such
coupling can be predicted theoretically only if stability is studied by the
coupled set of Mathieu Equations (39) rather than the single eigenvector term
approximation, Equation (43).

Deviation between theory and experiment occurred for another reason
for the data in Figure 10b. Here, the excitation frequency virtually coincides
with the theoretical frequency for the third symmetric mode (see Fig. 6a).
Thus, the influence of this mode was strongly felt in the shape of the stability
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boundary. However, the experimental third mode occurs at a somewhat
higher frequency, so that its effects are not so pronounced on the experi-
mental curve. The use of more terms (i.e., N > 5) in Equation (43)
probably would produce a better correspondence for this case.

The above explanation based on the interaction of linear symmetric
and parametric nonsymmetric modes can also be applied to the reldtive
position of the three boundaries in Figure 10c. Note it does not simply
follow that in all cases an increase in ullage pressure will tend to increase
stability (i.e., raise the stability boundary). The boundary for 3 psig is
somewhat higher than that for 6 psig. This probably occurs because the
integrated dynamic pressure loading of the initial state can be larger at the
frequency 2wj .19 for 3-psig ullage than it is at 6-psig ullage. That is, the
total dynamic pressure loading is determined by the dynamic pressure
distribution at the driving frequency, as well as the proximity of the driving
frequency to a natural frequency of a symmetric mode.

The above arguments can also be applied to explain the location of the

. stability boundaries in Figure 11, in which the influence of top mass on stabil-"
ity has been determined. Zero liquid depth was used to eliminate the influence
of the liquid. In general, one might expect that the smallest mass would pro-
duce the least parametric force. However, the force is a function of both the
mass and its acceleration for a given parametric mode so that the tank with
the lighter mass is more unstable for the given conditions. A glance at
Figures 6a - c shows that excitation at 2w] .19 is much nearer the first
symmetric mode frequency for the smallest mass than for the other two in

the case of the empty tank. Further, the boundary for the intermediate mass
with intermediate location of the first symmetric mode frequency in Figure 6
is correspondingly intermediate in its position in Figure 11. The behavior

of the system with the largest mass then falls at the opposite extreme.

It appears that the single eigenvector term approximation, Equation (43),
is quite useful for determining a reasonably good approximation for dynamic
stability in the system investigated. However, even for the limited data
obtained in this study, it is apparent that the more exact representation,
Equation (39), is required for an overall investigation. This will be empha-~
sized further by subsequent data to be presented.

Nonlinear Response

Although no nonlinear analysis capable of predicting subharmonic
response in the principal parametric mode was formulated in this study,
some experimental observations of this type of response were carried out
in order to present a better overall picture of parametric behavior in a
liquid-shell system coupled with a top mass. These results showing the
influence of several parameters on the principal parametric response in the
k=1, m = 10 mode are shown for Tank A in Figures 12 through 14, where
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wall response is plotted as a function of frequency ratio. These curves dis~
play the usual character of a principal parametric re8ponse3s 7 in that they
are either nonlinear softening (bend to the left) or nonlinear hardening (bend
to the right) and include jump phého’me‘na_where the response suddenly appears
and jumps up to a finite value or suddenly disappears as a result of damping. -

Figure 12 shows the influence of liquid depth on the subharmonic
response. These curves correspond to the stability boundaries given in
Figure 9. An increasing bend in the response indicates the presence of
greater nonlinearity as long as input acceleration is held constant or is a
lower value for the curves with greater bend. Thus, it may be concluded
that the largest nonlinearity was present at the largest liquid depth. That is,
the largest nonlinear interaction (which is distinct from the parametric inter-
action discussed in the previous section) between the liquid and shell occurs
at the largest liquid depth.

Similar response curves showing the influence of ullage pressure are
shown in Figure 13. These data correspond to the stability boundaries given
in Figure 10. Here, it is most interesting to note that at zero pressure the
response is softening, at 3 psig, it becomes hardening, and, at 6 psig, it
again becomes softening. It may be noted from Figure 9a that the frequency
of 2w -10 has changed its position relative to the first two symmetric modes
and probably is the reason for the changing behavior.

Response curves for different top masses on an empty tank are shown
in Figure 14. These responses correspond to the stability boundaries in
Figure 11. Here, no particularly dramatic change in the curves takes place
for different masses. Apparently, the top mass does not have so pronounced
an effect on the response as the liquid for the mode investigated. This
behavior is similar to the effect of these parameters on the parametric action
itself, which has been discussed earlier.

It must be emphasized that response in a principal parametric mode
is probably the simplest kind of nonlinear response (and the only one that has
been explained analytically to date) that can be observed in the system under
consideration. Many other types of nonlinear response, such as beating,
amplitude modulation, superharmonics, etc., can be observed experimentally.
In the present investigation, we have seen that liquid surface motion did not
enter the basic problem. However, Figure 15 shows a nonlinear response in
the present system in which nonlinear liquid surface coupling does occur.
The lower trace is also the tank wall response but is expanded on a greater
time scale. The tank was being excited under the indicated conditions so
that it was responding basically in the k = 1, m = 10 principal parametric
mode. However, in addition the high frequency tank motion, it sustained a
steady-state, low frequency amplitude modulation, and, simultaneously, the
liquid surface was excited at a large amplitude in its first symmetric mode.
Such nonlinear coupling between the liquid surface and high frequency tank
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wall motion has been explained previously by Chu and Kanal? in a partially
filled tank which is subject to lateral excitation and which sustains basically
harmonic wall response. The present case is even more complicated since
the wall sustains basically 1/2-subharmonic wall response.

Only nonlinear wall responses were shown in Figures 12 through 15.
It must be emphasized that similarly complicated responses occur in pres-
sure as well. Some details of pressure changes, as well as other types of
complicated wall responses, are given in the next section for various con-
figurations of the larger model tank.

EXPERIMENTAL RESULTS FOR LARGE MODEL WITH STIFFENERS

Many types of nonlinear response besides subharmonic motion could
be observed while testing Tank A. However, it was decided to perform
detailed observations of such responses in the larger, more representative
model in order to get a better physical feel for their significance in space
vehicle systems. In addition, the effects of ring stiffeners are determined
by including different numbers of rings so that some judgment can be made
about the possibility of such responses occurring in Saturn-type launch
vehicles. Examples of stability boundaries are given for those cases which
appeared to be the most unstable in each respective tank, that is, where the
tank became unstable with the least input acceleration amplitude. Only
typical results are presented in this section. For the most part, it will be
seen that the results provoke more questions than answers, which emphasizes
that only the surface has been scratched in the study of the general area of
nonlinear response of a liquid-tank system.

Results from Tank S-0 are shown in Figures 16 and 17. Considerable
detail on subharmonic motion in this tank has already been presented in our
earlier work?. Here, we have included only enough additional results to
compare with that which follows for tanks with rings installed.

Stability boundaries for several principal parametric modes in
Tank S-0 are shown in Figure 16, while an example of principal parametric
response is shown in Figure 17, for the k = 1, m = 8 mode. The wall
response was measured at an antinode of the motion. A great density of
unstable regions can readily be seen from the occurrence of three unstable
regions between 68 and 75 cps. A similar density occurs throughout the
frequency domain for this tank. Thus, at any appreciable value of input
acceleration, the most usual type of response by far occurs as some non-
linear form.

From Figure 17, it can be seen that the subharmonic wall response is

hardening for the example given. At the same time, however, the bottom
pressure first decreases and then increases as the frequency is increased.
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Phases between the various parameters can readily be determined. The
amplitude of the center trace is proportional to input acceleration which was
held constant by the shaker control system. However, this trace is in-phase
-with input displacement; therefore, it is out-of-phase with input acceleration.
Jump phenomena are not indicated in these photographs, although, of course,
they do accompany such responses. Thus, sudden changes in wall displacement
and pressure amplitudes can readily occur. Many other kinds of nonlinear
responses also can occur in Tank S-0. However, we will present examples of
their occurrence in the ring-tanks in order to emphasize that they still occur
for these tank configurations, although not to such a great extent, depending
on the number of rings present.

Figures 18 through 21 show results obtained in Tank S~-1. Three
stability boundaries are shown in Figure 18. Note, however, that two different
ones are given for the k = 2, m = 11 mode. A split natural frequency for this
mode causes the double boundary. Actually, one mode is proportional to
cosmf and the other to sinm#f. The shift in spatial distribution in displacement
between the two responses could be observed experimentally. Normally, both
responses should occur at the exact same frequency. In this case, eccentricities
in the tank geometry cause the split.

Wall displacements corresponding to two of the boundaries in
Figure 18 are shown for two subharmonic responses in Figure 19, while
photographs for the k = 1, m = 12 principal parametric motion are shown in
Figure 20. Both wall responses are nonlinear softening. Complete data for
increasing wall amplitudes could not be obtained for either mode because of
two different reasons, as is indicated in Figure 19.

Prohibitively large responses began to occuratlarger amplitudes for
the k =1, m = 12 mode. That is, the audible response from the tank indicated,
at best judgment, that large tank stresses were eminent, and the observa-
tions were discontinued. On the other hand, at large responses, the k = 2,

m = 1 mode began to change into an even more interesting behavior, as
indicated by the region marked POGO.

Figure 21 gives an example of POGO behavior which occurred within
the region indicated in Figure 20, and which could occur quite readily for
many different input conditions in the present system. Although the shaker
was set on automatic constant acceleration control for this case, the accelera-
tion actually produced by the control system was not held at constant amplitude
because of the interaction between the pressure response and the control
system. This interaction occurs in such a way that the amplitude modulated .
forms result. Since the output of the automatic control system represents
thrust in a launch vehicle, it can be seen that a form of POGO behavior is
occurring where an oscillatory deviation results between the simulated
thrust (which itself is oscillatory at a higher frequency here) and its intended
values. In an actual vehicle, such oscillatory deviations can become super-
posed on the steady thrust which is present and produce catastrophic failures.
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It must be emphasized that the laboratory example of POGO behavior
in Figure 21 applies only to the closed-loop interaction of the present model
system with the presently used shaker control system. One can only conclude
that similar behavior would occur in a launch vehicle only if its closed-loop
hydraulic-structural system were dynamically similar to that of the present
experiments. An exact similarity would, of course, be highly unlikely;
however, it is well known that certain types of POGO instabilities can readily
occur in typical systems. Thus, Figure 21 merely serves as a cautious
reminder that such POGO behavior is possible in complicated liquid-structural

systems and must be given due consideration.

Typical results obtained from Tank S-2 are shown in Figures 22 and 23.
Several stability boundaries for principal parametric motion are shown in
Figure 22, while photographs of corresponding nonlinear responses for each
respective region are shown in Figure 23. Note that still another type of
response corresponding to an entirely different form of instability is shown
in Figure 23. For this response, both pressure and input acceleration are
relatively constant in amplitude, but wall displacement sustains a form of
amplitude modulation or beating within the region marked '""Beating' in
Figure 22. Thus, a definite region of instability for this form of response
occurs similar to those for principal parametric motion. Closer observation
showed that the response is basically a beat between the k = 3, m = 17 and
the k = 3, m = 18 modes, and is excited at an input frequency which is near
f3.17 + £f3.18. This type of unstable region has been predicted for systems
which are governed by coupled Mathieu equations but, to the authors'
knowledge, have never been observed previously in any experimental system.

In addition to the above configurations, the large model tank was
tested in a three-ring configuration. However, for this tank, it is at this
point that the previously described nonlinear responses are no longer pre-
valent for reasonable input accelerations. Thus, for the case of three or
more rings, the basic response to longitudinal excitation becomes axi-
symmetric and linear, such as that for the initial state. In general,
increasing the number of ring baffles, then, increases the stability of the
system. This can be seen more directly from Figures 16, 18 and 22, where
an increased acceleration input is required to produce instability as more
ring baffles are present.. Further, those modes in which a ring baffle coin-
cides with a nodal circle appear to be most unstable.

GENERAL DISCUSSION AND RECOMMENDATIONS
FOR FURTHER WORK

It is readily apparent that the problem studied in the present work is
highly complicated in nature and encompases interactions between various
types of responses, each of which, when studied alone, poses quite a formidable
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problem. In this light, the scope of the present program was planned and
executed in a logical sequence.

A theoretical and experimental study has been conducted for a longi-
tudinally excited, flat-bottom, pressurized cylinder which is partially filled
with liquid and supports a rigid top mass. This appears to be the simplest
possible system which gives a good description of parameters that are
significant in launch vehicle systems. The detailed results which have been
presented indicate that all parameters considered have a significant influence
on initial-state axisymmetric responses, dynamic instability, and subsequent
nonlinear responses. Although the model comprising Tank A is idealized in
several respects, it is still sufficiently realistic so that the resulting theory,
as verified by the experiments, can now be applied to systems of actual-size
parameters in order to obtain at least an estimate of conditions which can
produce parametric instabilities.

The second phase of the program has sought to answer questions which
arise from the use of the idealized system in the first phase. In particular, it
now appears that parametric instabilities are not likely to occur in tanks of
Saturn~-type vehicles, so long as the tanks are stiffened to an extent which is
similar to that of the three-ring model tank of the present study. However,
in this regard, it is realized that considerable uncertainty remains as to what
type of responses will be prevalent in tanks where such a degree of stiffening
is not present, In fact, the '"degree'' of stiffening present cannot even be
defined precisely from the present results. Certainly, a better physical feeling
for the required stiffness has been presented, but a more exact answer can
come only from additional work. In particular, the significance of effective
anisotropic properties of stiffened tanks must be explored theoretically along
the lines of the work of Bagdasaryan and Gnuni®, and experimental verifica-
tion should be provided. It must be recalled that some upper stage tanks in
Saturn vehicles have very little, if any, wall stiffeners.

When using the developed theory for design estimates, one should bear
-in mind that bottom elasticity, as well as stiffening effects, have been
neglected. At present, there is no simple means whereby these bottom effects
on pressure distribution can be determined. The development of a membrane
solution appears highly desirable. However, it appears that nothing short of
finite difference methods will produce a suitable prediction of axisymmetric
linear responses in a more representative tank. This, of course, has a
profound bearing on the stability problem since this type of response repre-
sents the initial state of the system.

The present results indicate that parametric responses in the tank
systems occur over quite narrow bandwidths of frequency, although the
modal density of these narrow bands is very high. Thus, it is not clear from
the present work just how readily parametric responses can occur in a
system that is subject to excitation energy spread over some band rather
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than at a single discrete frequency. The answer to this question must come
from a study of the response of models such as those herein when subject to
random inputs having various bandwidths. Thus, a more representative

input can be achieved. Such a study can readily be performed and is highly
recommended. ‘

Eventually, the various types of nonlinear responses which have
been observed will have to be catalogued and each considered as a possible
potential problem. Needless to say, only questions remain in this regard,
with very little of the present results being of much help in explaining the
behavior. From an analytical point of view, nonlinear forms of the equations
will be required in determining the responses, and, without doubt, coupled
stability equations must be utilized, even for linear approximations. Much
remains in the study of the stability of coupled Mathieu-Hill equations.

The importance of dynamic response in the present system is vividly
demonstrated by the occurrence of a POGO-like behavior under controlled
excitation. One is tempted to say that apparently the liquid-tank system
is highly prone to display such behavior when coupled with almost any con-
trol system (such as it is in an actual vehicle). This probably results from
the fact that the total pressure, whether linear or nonlinear, when integrated
over the tank bottom, results in a very significant apparent mass, and the
sensitivity of this apparent mass to frequency intuitively indicates the pos-
sibility of such instabilities being present. Again, very little is known about
this type of interaction.

Various other comments and recommendations could be set forth in
view of the results of the present study. However, for the sake of brevity,
only one more will be illuminated. The present results indicate that a
strong coupling occurs between wall motion, liquid pressures, bottom effects,
end mass, etc., all of which are present as multiple systems in a composite
vehicle. Therefore, it appears highly desirable to investigate a single
system, such as that studied herein, from a mechanical impedance
(preferably transmission matrix) point of view, so that the dynamics of
tandem systems could be studied simply by combining the tandem elements.
The development of the transmission matrix, which will be frequency
dependent for a single liquid tank system, is itself no easy task. But, once
it is accomplished, it can then be used for design purposes in general. It
must be emphasized, however, that the mechanical impedance methods
are applicable only where linear responses are anticipated, such as for
sufficiently stiffened tanks.

38



ILLUSTRATIONS

39



]

.

tw

' Plastic Window
”‘ §

N —L,

NNNNN\N

Z

"0"- Ring Seal

INNNNNN ————[
‘

A=14.5
hs = 0. 005 4=

- |

A
- Xp COS wt

Figure 1. Coordinate System For Small Model

40

r2r -



[apoly |[ews Jo4 snededdy Ay1jigeys olweukq ‘g aanbid

.

i
-

.

e
e
S

i

. %.v

-
=

e

e

41




T
st R e
e S

o

o

o

e

=

e

S
e

ity Apparatus For Large Model

il
42

Stab

ic

Dynami

.

3

,,%« -
=

igure

-

o S

F

e




All Dimensions - {nches

54.50

7
/‘;' -
L~ Fill Port And Pressure Probe
Plexiglass Window
i
0.020
Wall
|
24.75 1.D-
A=88
h
Eq. of EHlipses
X242yt
12.375°
0.060 Wall ~=f= — Pressure Transducer

12.0

26.50 0.D.

Figure 4. Layout Of Large Tank

43

939



Y

LN

AN,

-

Tank A U

1

- ]

Tank S-2
24 - Longerons$
2- Ring Baffles

Tank S-0

24- Longerons
0- Ring Baffles

Tank S-1
24- Longerons
1 - Ring Baffle

-B

d

24- Longerons
3- Ring Baffles

Tank S-3.

Figure 5. Configurations Of Model Tanks

44

1725



Natural Frequency, cps

1100

a. Wo=34.53 Ib.

- i ! 1 1
O Experiment = ----m-- Asymptotes
q -~ Theory (5Terms) 4 Theory(10Terms)
\.
1000
o o ! I
k=4,m=0
900
800
-M/Y/M-,
700
600
500 )
‘ Tank A
Po = 0 psig
400
300 Q=———OmaDxeaQrzmredy—=ry o R A
(\O O™
200 \
\O
k=1,m=10
0 ’
0 0.2 0.4 0.6 0.8 . L0 1.2
Liquid Depth Ratio, h/2 1643

Figure 6. Natural Frequencies Of Partially Filled Tank With Top Mass

45



Natural Frequency, cps

1100

b. Wg=22.32 Ib.
Figure 6. Natural Frequencies Of Partially Filled Tank With Top Mass

46

—O=- Expleriment Tank A
| Po = 0 psig .
1000
[
?\ \ ' \K k=4,m=0
\ \ SN
\ 5 \
800 \ N —
\ \ k=3,m_ =(
700 \3
\ N\
§ h\
600 \ \\h
k=2, m = L
500 \\ '
R
N\
409(?___0____0\ m“*O— U g — )
<
DN
300( N k = 1' ms=
<\ o
O— \ ol
00— A\ _k=1,m=13
\
AN
o
100— k==1,m=10&0\\0‘—-O-—---o-—---GD
- T —0- —o— —@r
0 , : -
0 0.2 0.4 - 0.6 0.8 1.0 1.2
Liquid Depth Ratio, h/A 1708



Natural Frequency, cps

1100 T
—O= Experiment Tank A
(E Po = 0 psig
\ \ 7. \ k= 4, m=0
900 3{ ' \ ' \K
\ Y\
800 N %)
| \ k=2,m=0 ‘\ k=3,m=0
\ o}
700 \ AN
\ \
500()__'__0-_* ‘O\-‘Q__o.___o_
™
\1\ k=1,m=0
Q.. , N
300 N _ \c\
o— \ | \“'o\
- “\\\\\k=1,m=13 ~
\\\o.
100 — k=1,m=10 5\&\0--—-0——--—0-——00
0 - e _
0 0.2 0.4 0.6 0.8 1.0 1.2
Liquid Depth Ratio, h/4 1708
c. Wp = 1148 b.

Figure 6. Natural Frequencies Of Partially Filled Tank With Top Mass

47



Natural Frequency, cps

1000 T
= Theory
O  Experiment
h/X =0.552
900
N
@) O
300 * .
\ k=3, m=0
700
Tank A
600
\ k=2,m=0
00—\ o
\‘ 5
\ i
300 k=1'm 0
200
~
0
5 10 15 20 25 30 35
Top Weight, b 1704

Figure 7. Effect Of Top Mass On Natural Freduencies

48



asuodsay |{eM JLIBWWASIXY 104 UORRIAJEIIY :ac__ 01 aANe|aY sse doj jo esuodsay °8 ainbi4

eeal sdo *‘Kouanbauy
09¢ 0s¢ ove 02e 01t 00€ 062 08¢ 0L 0%
ﬁw O QE&pdilOln_v © o © ®) \
) @Mw ‘ //// vo 0 \ >°

N ,” ©

@)
M_,o | L\ /

49

uonedijduy uoneiajaddy

Bisd or - °d v yuel
_% OERIL

ql €5°%E = M

Juswiadx3 0 N
( sw.ay ¢ ) K1oayl

( suiay 0] ) A108Y] —— —

I I N T




gt
o

-
o

| nput Acceleration, gy

W -34.53 Ib
Po = 0 psig

O Exp.,2f,.0=450 |
— Theory, 2f,_,o = 490

——_

C

Tank A

0 0_;/ 0.994 0.996 0.998 1.000 1.002 1.004 1.006

Frequency Parameter, w/2w-1o 1738
a. hix=0

Figure 9. Influence Of Liquid Depth On Stability

50



I nput Acceleration, gy

0.36
0.32 |
I
Wo=34.53 Ib
Po = 0 psig
0.28 [ ] '
' : O  Exp.,2f, 0= 197
28 —— Theory, 2f,_,o= 166
0.2 Tank A :

Y o
0.20—N\ _/
0.16 \ 7

\ /
0.12 O
o)
0.08 O O
N ) O /
\ OC) O/
0.04
0L/
-
0" 0.994 0.996 0.998 1.000 1.002 1.004 1.006
Frequency Parameter, w/2w,_jq 1739
| b. hix =0.414

Figure 9. Influence Of Liquid Depth On Stability

51



Input Acceleration, gy

c. h/x=0.983
Figure 9. Influence Of Liquid Depth On Stability

52

0.036
0.032
Wo = 34.53 Ib
Po = 0 psig
0.028 .
. @) EXp. , 2f|_|o= 158
—— Theory , 2f|-|o =154
0.024
0.020 :
o \\ /
0.016 1 / ' o
0.012 O A
o \ /
Tank A O
0.008 \ : / O
o)
o)

_ fo)

0.004

0 LA , .
0  *0.994 0.996 . 0.998 1.000 1.002 1.004 1.006
' Frequency Parameter, w/2w,_,o 1740



10.0 —
Po = 0 psig
Wq = 34.53 Ib
¥
~ '
= Q‘é\ hix=0| K
1.0 - If/
E’Z’.’.’_‘:& ‘
Tank A
> C
= N -
‘C y g .
S N, hid=0.414 S
< - G | | o>
2 0.1 O O
Fad ™SO o
<Lr.’ \\O //G,J
2
£
N |
NI s
~ o hiA=0.983 v
0.01 -]
~ : -
//
~
0,001 L , - |
0 0.994 0.996 0.998 1.000 1.002 1.004 1.006
Frequency Parameter, w/2w,-io 1737

d. Logarithmic Plot
Figure 9. Influence Of Liquid Depth On Stability

53



Input Acceleration, gy

0.40

o] /
O
0.32
W, = 34.53 Ib
h/4 =0.983
0.28 O Exp.,2f, o= 379 <
— Theory
0.24 o ° /
O
0.20 | 5=
0.16 o
Q /
0.12 /
0.08
0.04
0 LA
0’ 0.9% 0.998  1.000 1002 1004  1.006

0.996

Figure 10. Influence Of Ullage Pressure On Stability

Frequency Parameter, w/2w;-y0 -
a. pg =3 psig

54

ir2l



Figure 10. _|nfluence Of Ullage Pressure On Stability

55

0.40 O /
0.36 -
W, = 34.53 Ib o
h/x =0.983
0.32 O O Exp.,2f,_ 0" 518
Theory
0.28
o)
=< 0.24
5
3 020 C
g 77—
2
o )
— e ——
0.16 ~
\ o Tank A
0.12
\ ]
o)
0.08
O
0.04
0 ;/l . . :
0" 0.99% 0.996 0.998 1.000 1.004 1.006
Frequency Parameter, w/2w,_,o ez
b. py=6 psig



0.2

Input Acceleration, g,

- L0
0.8

0.6 -

0.4

o
r

0.02

0.01

0.008
0.006

0.004 |—

0.002

- 0.001

[ =
S 85

Frequency Parameter, w/2w,-o
c¢. Logarithmic Plpt

- Figure 10. Influence Of Ullage Pressure On Siability

56

A  —
-~ h
- \\
Al | q |
S
C\\ ; \ 9’///
,)3\ }i’ /,J///A(
AN s » Ay
N b\ /3435,’ /_/
. P ‘
\ }‘J,atj' /
RN AP:
- 3 . AV, WAl
F Wo =34.53 Ib ~——f
. hlx=0.983 ' \'Vd
- P ( psig )
-_-O-O, '2f|-|°= 158
=0=3, 2f,_,0=-379 ¢ Experiments
"A-6, 2f|-|°= 518 ‘
\\& } ,
. | _
| : Jol
ol \“k Tank A el
. Or\‘ - : oA
N 7°
~ > oz
S+
0 0.994  0.996 0.998 1.000 . 1.002 1.004 - 1.006
1707



Input Acceleration, gy

20.0

|
We |
10.0 —O—11.481b |
8.0 » —0— 2.321b
6.0 Po = 0 psig 1 —0—34.531b
hik=0 o
4.0 i
\\b\ -Tank A /
2.0 £ 4 —t
A |
A AN
N\ /
1.0 N —
'J
0.8 \ ey \D -
0.6 SN /,f
h ’N
0.4 N A
. N ’/u
\h P\/
™ 7
\\ /
0.1 -—l/f : ‘
0" 0.994 0.996 0.998 1.000 1.002 1.004 1.006
Frequency Parameter, w/2w,.,o 1756

Figure 11. Influence Of Top Mass On Stability
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Figure 13. Influence Of Ullage Pressure On Subharmonic Wall Response
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APPENDIX A

Elements of Square Submatrices in Equation (12)

Rln'n = 6'n.'rl + an'n’ Sln‘n = O ’ Tlnln = 0

1
2n'n =0, S,Zn'n = -Z_NZmnXZn' + NymnX1n' + 6n'n s Tzn:n =0

3n'n o, 3n'n 0 , T3n'n =6nn

H2 2 (pn /M
_ s ,.2 2.2 1 1-v 0 n 2
Uln‘n = [1 + —1—2-()\,n +m*) ] Sntn * T {-—E—- (-? +m ) 5n'n

2
M
g)\nﬁx +—g—pamzx3 }
2malE n'n E n'n

=V [Xln'NZmn + xOn'Nlrnn - )“nan'n]

S
I

Winin = mdpiy

VZn'n = ()\?1 + - —zv mZ) 6n'n + mZ(; = (%NZmnXZn' + Nlmnxln'>
Wann = - . ZV mAnbnin

U3n'n =mdpniy

V3n'n = L.;;!-m(iln'NZmn +i0n'N1mn) -m - ;‘V )"nﬁn'n

l-v 2 2
W3n:n=( > )\n'l'm )6nln
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A.2 Coefficients for Equations (21) through (23)
Coefficients for E.quatioh (21):

nzl

Uz = “VAnbam

(2,1=-v 2 1-v (1
Vzn'n—()\n-’. 2 m)6n1n+m 2 (_z—NZmnXZn."Nlmnxln

14+v
WZnnn = - > mApdnin Rzn‘n =0 , Tzn.n =0
s, =1 I 5., +N 5 5,
2.1 2mnX2n'°n'n 1mnX1n'®n'n *

1 Xon!
{ m 2 2 sz)(znl + Xml)(ln!) + (1 - vz) QZ [sz ‘-""'—2

+ Xmlxln‘]}

Coefficients for Equation (22):

1+v

Uy, =mbnm . Vi, - Apbpiy]
1-v 2 2

Wanm = ( 2 Mtm ) batn » R3,, =0, 83,70, T3,,=8nm
1+v ~ ~

Fcnl = - m2X1in' t XleOn']

Coefficients for Equation (23):

2 2
s 202 & 1-ve (Kn 2) Po
Ul‘ﬁnn'*' ()\.n+m) dpn + ™ E—+m ko)

Mg 2 2 pga
- 5 ZE )”n:] Spp ¥ E X3n'n}
ma

V1 = v[NZmnxln' +N1mnXOn1' }‘nsn'n] ’ wl =m5n'n ' R1 ==‘?’n'n +an'

, ~ ~ -~ B
Sl =0 , Tl =0 |, Frn|= -V[szxlnl + Xm1X0n|] + (1 - Vz) Qon:
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Elements of n X1 Column Submatrices in Equations (27)

p p
AP - Amn gP - Bin ép - Cl1?nn
Mn Xy Mn - Xy mp X,
Fen=Frp v Fap=Fay o Fepy = Fey

Elements of the Matrices in Equations (40)

Elements of [M1]:
~ ~ N
l\dln'kzs22 z [8nm + Mmn'n(2)] Ammny
n=1
Elements of [M,]:
2 al 1
Mante = 2 Zl [ Bawxen' * BiiXin' ¥ Bmnyfnn]
n=
Elements of [M3]:
M3pix = @ 21 Cmnkén'n

n=

Elements of [K;]:

N
~2
Kin'k = % 2 [6nm+ an'n(Qk)] Amny
n=1

Elements of [KZ]:
N
=2 1 s
Kon'k = % 2, [ Baixzn' * B1xXin' + Bmng n'nl
n=1
Elements of [K3]:

=2
Kank = $4¢ Zl Cmnkﬁn'n
n=
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Elements of [Tq]:

€

N N
Tink = Z l: Z (Nln")"le+)‘nN3n“ d

n=1lint'=1

nl lnln

+ mZNznn) dptintn
n''n'n

+ )‘nﬁgeOn':l Amnk
Elements of [T,]:
Tonk =0
Elements of [T3]:
Tank =0
where, for each of the above matrices,
n'=1toN

k =1 to 3N

A.5. The first five roots* of the equation in

J;‘n(Mmj) =0 , m=10

j Fmj

1 11.77088
2 16.44785
3 20.22304
4 23.76071

5 27.18202

*These roots are obtained by interpolation with a Bessel function
subroutine accurate to five or six figures. In addition, the first five roots
for m = 0 to 8 are given in W, H. Chu, '"Breathing Vibrations of a Partially
Filled Cylindrical Shell-Linear Theory, " J. Appl. Mech., Vol. 30, No. 4,
pp. 532-536, December 1963.
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APPENDIX B

EXPERIMENTAL DATA FOR TANK A
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TABLE B.2. AMPLITUDE AMPLIFICATION

Tank A
W, = 34.53 1b
po = 10 psi
h/f =0.69
f, . f, s
cps uﬂ‘*’z/gx cps Uy ‘*’2/82
241.1 5.6 319.5 1.7
244.2 6.0 320. 4 2.7
245.3 6.7 321.2 3.4
248.5 9.0 322.0 5.3
251.7 11.4 322.6 5.3
255.9 19.7 323.6 9.1
257.4 24.6 324.4 16.3
257.7 26.8 325.2 34.2
258.8 39.2 325. 6 48.7
259.9 - 65.9 325.9 8.4
261, 4 98. 4 326.2 8.9
263.0 56.2 326.3 19.7
264.5 31.9 327.5 15.5
266.5 20.2 328.3 11.5
269.3 12.9 331.6 5.3
272.2 9.0 336.5 - 3.4
274.3 7.5 340. 3 2.9
276.7 6.2 344, 6 2.4
281.0 4.6 349.5 2.2
285,1 3.2 356.7 1.8
©292.2 2.6 368. 6 1.5
295, 6 1.7
300. 3 1.6
303.8 1.2
308.8 0.5
310.5 0.2
311.3° 0.3
S 311.7 0.9
313.2 0.1
314.8 0.6
316.8 1.4

Note: Plotted on Figure 8.
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APPENDIX C

EXPERIMENTAL DATA FOR LARGE MODEL WITH STIFFENERS

PRECEDING PAGE BLANK NOT FILMED.
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TABLE C.1.

STABILITY BOUNDARIES

pg = 0'psi, h/f = 0,818

.
Tank §-0 Tank §-1 Tank §-2
S~
(Fig. 16) ) {Fig. 18) . (Fig. 22)
Input ’ Input . Input Input
Frequency, Acceleration, Frequency, Acceleration, Frequency, -Acceleration, Frequency, Acceleration,
cps g <ps 2 cpse g cps__ 4
67.0 0.10960 140.6 0. 146 320.1 1.46 346.6 0.409
1 67.4 0.0717 140.9 0.131 321.3 1.37 347.3 0.391
67.8 0.0384 141.4 0..137 322.0 1.31 348.3 0.372
68.1 0.0534 141.9 0.153 324.1 1.27 348.9 0.421
68.5 0,0293 142.4 0.192 325.2 0.98 349.7 0.625
68.8 0,0214 143.0 0.177 326.0 0.83 350.7 0,732
69.1 0.0156 143.5 0.149 327,1 0. 854 351.5 0.726
69.5 0.0159 143.9 0.128 327.8 0.945 352.0 0.800
69.9 0.0101 144.3 0.131 328.3 0.930 352.8 1.128
70.2 0.0043 144.7 0.134 328.8 0,838 353.5 1.401%
70.6 0.0073 145.1 0.131 .329.3 0.738 354.2 1.388%
70.9 0.0397 145.6 0.155 329.8 0.671 354.9 1.038%
71.2 0.0189 146.0 0.171 330.3 0.625 355.6 0.906%
71.6 0.0201 146.3 ¢ 0.216 330.9 0.610 356.4 0.940%
72.1 0. 0580 147.0 0.311 331.5 0.610 357.0 0.885%
72.5 0.0595 147.6 0.286 332.1 0.640 357.7 0.778%
72.7 ‘0. 0488 148.1 0.207 332.8 - 0.640 358.5 0.565%
3.0 0.0317 148.5 0.169 333.7 0.537 359.1 0.451t
73.3 0.0238 149.1 0.131 334.4 0.482 359.9 0.378%
3.5 0.0165 149.5 0.119 334.8 1.050% 360.8 0.293
73.8 0.0189 149.9 0.128 334.9 0.519 361.7 0.171
4.2 0. 0327 150.2 0.156 335.3 0. 747 362.3 0.110
4.7 0, 0465 . 150.5 0.195 335.6 0.733 363.2 0.098
151.0 .0.195 335.7 0.880% 363.7 0.122
151.5 0.165 336.3 0.635 364.5 0.171
336.6 0.687% 365.2 0.229
337.0 0. 550 366.1 0.348
337.9 0. 464% 366.8 0.458
338.6 0. 345% 367.6 0.625
339.6 0.238% 368.7 0.975 -
340.4 0.159%
341.4 0. 089%
341.9 0.063%
342.5 0. 048%
343.5 0.104%
344.1 0,183%
344.1 0.421
344.6 0.348
344.9 0. 335%
345.9 0.427

#Beating subharmonic

tLarge amplitude wall motion
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TABLE C.2. SUBHARMONIC WALL RESPONSE

!

Tank S-1

. Pg = 0 psi | B

h/f =0.818

8« =0,2 ] |

N

(Fig. 19)
' Wall

Frequency, Displacement,

cps mils (p-p)

151, 9% -
151.2 2.24
150.7 7.56
150. 4% - -
150.1 1.40
149.8 11.90
149.6 : 11.76
149.1 14.60
148.8 15.00
148.5 19.60
148.1 21.70
147.7 - 26.30
147, 4%% -
146, 2% --
145.5 0.70
145, 1 2.80
144.7 b.72
144.3 14.60
143.9 19,32
143.6 30.40
143.1 34.30
142. 5F -
141.9. 9.66
141.4 10.92
141.0 11.90
140.7 3.50
140.1% -

¥No subharmonic
**Complicated respohse:
T Beating
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